Relay Output Modules

D4-08IR Relay Output	
Outputs per Module	8 relays
Commons per Module	2 (isolated)
Operating Voltage	$5-30 \mathrm{VDC} / 5-250 \mathrm{VAC}$
Output Type	Form A (SPST-NO)
Peak Voltage	$30 \mathrm{VDC} / 256 \mathrm{VAC}$
AC Frequency	$47-63 \mathrm{~Hz}$
ON Voltage Drop	N / A
Max Current	$2 \mathrm{~A} / \mathrm{point}$
Max Leakage Current	0.1 mA @ 265VVAC
Max Inrush Current	2 A
Minimum Load	5 mA
Base Power Required 5V	550 mA max
External DC Required	None
OFF to ON Response	12 ms
ON to OFF Response	12 ms
Terminal Type (included)	Removable
Status Indicators	Logic side
Weight	9.1 oz. (260g)
Fuses	1 (8A) per common

Typical Relay Life (Operations)			
$\begin{aligned} & \text { Maximum Resistive } \\ & \text { or nnductive Intush } \\ & \text { Load Current } \end{aligned}$	Operating Voltage		
	$\begin{aligned} & 30 \\ & V D C \end{aligned}$	$\begin{aligned} & 120 \\ & \text { VAC } \end{aligned}$	$\begin{array}{\|l\|} \hline 250 \\ \text { VAC } \end{array}$
2A resistive	100 K	300 K	200 K
2A inductive	100	80K	60K
0.5A resistive	800k	1 M	800 K
0.5A inductive	300 K	300 K	200 K

Check the Power Budget

Verify your power budget requirements

Your I/O configuration choice can be affected by the power requirements of the I/O modules you choose. When determining the types and quantity of $1 / O$ modules you will be using, it is important to remember there is a limited amount of power available from the power supply.
The chart on the opposite page indicates the power supplied and used by each DL405 device. The adjacent chart shows an example of how to calculate the power used by your particular system. These two charts should make it easy for you to determine if the devices you have chosen fit within the power budget of your system configuration.
If the I/O you have chosen exceeds the maximum power available from the power supply, you can resolve the problem by shiffing some of the modules to an expansion base or remote I/O base (if you are using remote I/O).

Warning: It is extremely important to calculate the

 power budget correctly. If you exceed the power budget, the system may operate in an unpredictable manner which may result in a risk of personal injury or equipment damage.
Use ZIPLinks to reduce power requirements

If your application requires a lot of relay outputs, consider using the ZIPLink AC or DC relay output modules. These modules can switch high current (10A) loads without putting a load on your base power budget. Refer to Wiring System for DL405 PLCs later in this section for more information.

This logo is placed next to I/O modules that are supported by the ZIPLink connection systems.
See the I/O module specifications at the end of this section.

Calculating your power usage

The following example shows how to calculate the power budget for the DL405 system. The example is constructed around a single 8 -slot base using the devices shown. It is recommended you construct a similar table for each base in your system.

A				
	Base Number 0	Device Type	5 VDC (mA)	External 24 VDC Power (mA)
B	CURRENT SUPPLIED			
	CPU/Expansion Unit /Remote Slave	D4-454 CPU	3700	400
O	CURRENT REQURIED			
	SLOT 0	D4-16ND2	+150	+0
	SLOT 1	D4-16ND2	+150	+0
	SLOT 2	F4-04DA	+120	+100
	SLOT 3	D4-08NA	+100	+0
	SLOT 4	D4-08NA	+100	+0
	SLOT 5	D4-16TD2	+100	+0
	SLOT 6	D4-16TD2	+100	+0
	SLOT 7	D4-16TR	+1000	+0
1	OTHER			
	BASE	D4-08B-1	+80	+0
	Handheld Programmer	D4-HPP-1	+320	+0
E	Maximum Gurrent Required		2820	100
F	Remaining Gurent Available		3700-2820=880	$400-100=300$
	1. Using a chart similar to the one above, fill in column 2. 2. Using the tables on the opposite page, enter the current supplied and used by each device (columns 3 and 4). Pay special attention to the current supplied by the CPU, Expansion Unit, and Remote Slave since they differ. Devices which fall into the "Other" category (Row D) are devices such as the Base and the Handheld programmer, which also have power requirements, but do not plug directly into the base. 3. Add the current used by the system devices (columns 3 and 4) starting with Slot 0 and put the total in the row labeled "maximum current required" (Row E). 4. Subtract the row labeled "Maximum current required" (Row E), from the row labeled "Current Supplied" (Row B). Place the difference in the row labeled "Remaining Current Available" (Row F). 5. If "Maximum Current Required" is greater than "Current Supplied" in either column 3 or 4 , the power budget will be exceeded. It will be unsafe to use this configuration and you will need to restructure your I/O configuration. Note the auxiliary 24VDC power supply does not need to supply all the external power. If you need more than the 400 mA supplied, you can add an external 24 VDC power supply. This will help keep you within your power budget for external power.			

DL405 CPU power supply specifications and power requirements

Specification	AC Powered Units	24 VDC Powered Units
Part Numbers	$\begin{aligned} & \quad \text { D4-454, } \\ & \text { D4-EX (expansion base unit), } \\ & \hline \text { D4-RS (remote slave unit) } \end{aligned}$	D4-454DC-1, D4-EXDC (expansion base unit)
Voltage Withstand (dielectric)	1 minute @ 1,500 VAC between primary, secondary, field ground, and run relay	
Insulation Resistance	$>10 \mathrm{M} \Omega$ at 500 VDC	
Input Voltage Range	85-132 VAC (110V range) 170-264 VAC (220V range)	20-28 VDC (24VDC) with less than 10% ripple
Maximum Inrush Current	20A	20A
Maximum Power	50VA	38 W

Power Requirements

Power Supplied					
CPUs/Remote Units/ Expansion Units	5 VDC Current Supplied in mA	24V Aux Power Supplied in mA	CPUs/Remote Units/ Expansion Units	5V Current Supplied in mA	24V Aux Power Supplied in mA
$\begin{aligned} & \text { D4-454 CPU } \\ & \text { D4-454DC-1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 3100 \\ & 3100 \end{aligned}$	$\begin{aligned} & 400 \\ & \text { NONE } \end{aligned}$	$\begin{aligned} & \frac{D 4-E X}{\frac{D 4-E X D C}{}} \\ & \frac{D A--X S}{A 4-E B C} \\ & \hline \end{aligned}$	$\begin{aligned} & 4000 \\ & 4000 \\ & 3700 \\ & 3470 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 400 \\ \text { NONE } \\ 400 \\ 400 \\ \hline \end{array}$
Power Consumed					
Power-consuming Device	5V Current Consumed	External 24VDC Current Required	Power-consuming Device	5V Current Consumed	External 24VDC Current Required
I/O Bases			Analog Modules (continued)		
$\frac{\frac{D 4-04 B-1}{\frac{D 4-06 B-1}{D 4-08 B-1}}}{\frac{0}{4}}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \end{aligned}$	NONE NONE NONE		$\begin{aligned} & 75 \\ & 75 \\ & 70 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 75+20 \text { per circuit } \\ & 90 \end{aligned}$
DC Input Modules			$\frac{\text { F4-04DAS-1 }}{\text { F4-08DA-1 }}$	$\left[\begin{array}{l} 90 \\ 60 \\ 90 \end{array}\right.$	60 per circuit $100+20$ per circuit
$\left\lvert\, \begin{aligned} & \frac{D 4-16 N D 2}{} \frac{\text { D4-6ND2F }}{\text { DU-63NDS-1 }} \\ & \frac{D 4-64 N D 22}{2} \end{aligned}\right.$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 1500 \text { max. } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { NONE } \\ & \text { NONE } \\ & \text { NONE } \\ & \text { NONE } \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \\ & 80 \\ & 120 \\ & 110 \end{aligned}$	$\begin{aligned} & 150 \\ & 100+20 \text { per circuit } \\ & 25 \text { max. } \\ & \text { NONE } \\ & 50 \\ & 60 \end{aligned}$
			Remote I/O		
AC Input Modules			$\frac{H 4-E R M 100}{\frac{144-R R M-F}{D 4-R M}}$	$\begin{aligned} & 320(300) \\ & 450 \\ & 300 \end{aligned}$	$\begin{aligned} & \text { NONE } \\ & \text { NONE } \\ & \text { NONE } \end{aligned}$
$\frac{D 4-08 N A}{D 4-16 N A}$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	NONE NONE			
AC/DC Input Modules					
D4-16NE3	150	NONE	Communications and Networking		
DC Output Modules			$\begin{aligned} & \hline \text { H4-ECOM100 } \\ & =\frac{\text { D4-DCM }}{\text { F4-MAS-MB }} \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 500 \\ & 235 \end{aligned}$	$\begin{aligned} & \text { NONE } \\ & \text { NONE } \\ & \text { NONE } \end{aligned}$
$\frac{D 4-16 T D 1}{\frac{D 4-16 T D 2}{}}$	$\begin{aligned} & 200 \\ & 400 \\ & 250 \\ & 350 \\ & 350 \\ & 800 \\ & \hline \end{aligned}$	125 NONE 140 120 (4A max including loads) NONE			
$\frac{D 4-32 I D T}{D 4-32 I D 2}$			CoProcessors		
D4-64TD1			F4-CP128-1	305	NONE
AC Output Modules					
$\begin{aligned} & \text { D4-08TA } \\ & \hline \text { D4-16TA } \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 450 \end{aligned}$	NONE NONE	Specialty Modules		
Relay Output Modules			$\begin{aligned} & \text { H4-CTRIO } \\ & \frac{\text { D4-16SIIM }}{\text { F-4LIC }} \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \\ & 280 \end{aligned}$	$\begin{aligned} & \text { NONE } \\ & \text { NONE } \\ & 75 \end{aligned}$
$\begin{aligned} & \text { D4-08TR } \\ & \text { F4-08TRS-1 } \\ & \text { F4-08TRS-2 } \end{aligned}$ D4-16TR	$\begin{aligned} & 550 \\ & 575 \\ & 575 \\ & 5750 \\ & 1000 \end{aligned}$	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { NONE } \\ \text { NONE } \\ \text { NONE } \\ \text { NONE } \end{array}\right. \\ & \hline \end{aligned}$			
Analog Modules			Programming		
$\begin{aligned} & \text { F4-04AD } \\ & \text { F4-04ADS } \\ & \hline \text { F4-08AD } \end{aligned}$	$\begin{aligned} & 150 \\ & 370 \\ & 75 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \\ & 90 \end{aligned}$	D4-HPP-1 (Handheld Prog.)	320	NONE
			Operator Interface		
			DV-1000	150	NONE
			C-more Micro-Graphic	210	NONE

