IEC Limit Switches

ABP series double insulated limit switches

- Featuring an electrically isolated PBT body for corrosive environments
- Single conduit openings in $1 / 2^{\prime \prime}$ NPT or PG13.5
- Conduit openings splined actuator shaft allows very fine adjustment of switch to fit all applications
- Choose from eight different actuators including roller levers, plungers, and wobble sticks

ABP Series									
Part Number	Price	$\begin{aligned} & \text { Drawing } \\ & \text { Link } \end{aligned}$	Actuator Type	Number of Conduit Holes	Conduit Threads	Max. Actuation Speed (m / s)	Min. Actuation Force (N) Torque ($N \cdot m$)	Min. Positive Opening Force (N) Torque ($N \cdot m$)	Photo
ABP1H14Z11		PDF	Galvanized steel	One	PG13.5	0.5	14 N	40N	A
ABP2H14Z11		PDF	plunger	One	1/2" NPT	0.5	14 N	40N	A
ABP1H19Z11		PDF	alvanized steel	One	PG13.5	0.5	14 N	40N	B
ABP2H19Z11		PDF	plunger with roller	One	1/2" NPT	0.5	14 N	40N	B
ABP1H35Z11		PDF	One-way lever with	One	PG13.5	1.0	8 N	30 N	C
ABP2H35Z11		PDF	polyamide roller	One	1/2" NPT	1.0	8 N	30 N	C
ABP1H41Z11		PDF	Side rotary lever with	One	PG13.5	1.5	$0.15 \mathrm{~N} \cdot \mathrm{~m}$	$0.30 \mathrm{~N} \cdot \mathrm{~m}$	D
ABP2H41Z11		PDF	polyamide roller	One	1/2" NPT	1.5	$0.15 \mathrm{~N} \cdot \mathrm{~m}$	$0.30 \mathrm{~N} \cdot \mathrm{~m}$	D
ABP1H51Z11		PDF	Side rotary adjustable	One	PG13.5	1.5	$0.15 \mathrm{~N} \cdot \mathrm{~m}$	$0.30 \mathrm{~N} \cdot \mathrm{~m}$	E
ABP2H51Z11		PDF		One	1/2" NPT	1.5	$0.15 \mathrm{~N} \cdot \mathrm{~m}$	$0.30 \mathrm{~N} \cdot \mathrm{~m}$	E
ABP1H71Z11		PDF	Side rotary with	One	PG13.5	1.5	$0.15 \mathrm{~N} \cdot \mathrm{~m}$	$0.30 \mathrm{~N} \cdot \mathrm{~m}$	F
ABP2H71Z11		PDF	stainless steel rod	One	1/2" NPT	1.5	$0.15 \mathrm{~N} \cdot \mathrm{~m}$	$0.30 \mathrm{~N} \cdot \mathrm{~m}$	F
ABP1H92Z11		PDF	Wobble lever w/	One	PG13.5	1.0	$0.18 \mathrm{~N} \cdot \mathrm{~m}$	-	G
ABP2H92Z11		PDF	steel spring	One	1/2" NPT	1.0	$0.18 \mathrm{~N} \cdot \mathrm{~m}$	-	G
ABP1H93Z11		PDF	Wobble lever w/	One	PG13.5	1.0	$0.18 \mathrm{~N} \cdot \mathrm{~m}$	-	H
ABP2H93Z11		PDF	stainless steel spring	One	$1 / 2^{\prime \prime}$ NPT	1.0	$0.18 \mathrm{~N} \cdot \mathrm{~m}$	-	H

IEC Limit Switches Accessories

Replacement contact blocks

Easily-installed replacement contact blocks fit both heavy-duty IEC and double-insulated limit switches, including mini-DIN models.

Note: Limit switches come standard with snap-action contacts (AGZ11-SWITCH.) To replace contact block, remove limit switch cover. Carefully remove old contact block and install replacement. Contact blocks are supplied with an adapter to fit into larger ABM and ABP switches. Remove this adapter when installing contacts in mini-DIN AAP models.

Replacement Contact Blocks

Part Number	Price	Contact Type	Action
AGZ11-SWITCH		Snap-action 1 N.C. and N.O.	3ms change-over time
$\boldsymbol{A G Z 0 2 - S W I T C H ~}$		Snap-action 2 N.C.	3ms change-over time
$\boldsymbol{A G X 1 1 - S W I T C H ~}$		Slow-action 1 N.C. and 1 N.O.	Break before make
$\boldsymbol{A G Y 1 1 - S W I T C H ~}$		Slow-action overlay 1 N.C. and 1 N.O.	Make before break
$\boldsymbol{A G W 0 2 - S W I T C H ~}$		Slow-action delay 2 N.C.	Simultaneous
$\boldsymbol{A G W 2 0 - S W I T C H ~}$		Slow-action overlay 2 N.O.	Simultaneous

Additional lever arms, spare parts and accessories for ABM series

Addifional Lever Arms/Spare Parts and Accessories			
Part Mumber	Price		Actuator Type
AGE42-LEVER		P0F	
CE4		NA	
AGE52-LEVER		${ }^{\text {POF }}$	
AGE54-LEVER		Pof	

Note: See the Bar Charts page of this section for more information.

General Specifications

EC Limit Switches Specificaitions		
Approvals		All: CENELEC EN 50041, CEI EN 60947-5-1 Plastic models: UL (508), CSA C22.2 No 14-M91
Environmental		
Degree of Protection		Plastic models: IP65 according to IEC 529 Aluminum models: IP66 according to IEC 144-CEI70-1
Temperature Range		Plastic models: stocking: -30 to $80^{\circ} \mathrm{C}\left(-22\right.$ to $\left.176^{\circ} \mathrm{F}\right)$ working: -25 to $70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ Aluminum models: stocking: -30 to $80^{\circ} \mathrm{C}\left(-22\right.$ to $\left.176^{\circ} \mathrm{F}\right)$ working: -10 to $70^{\circ} \mathrm{C}\left(14\right.$ to $\left.158^{\circ} \mathrm{F}\right)$; minimum temperatures assume that the atmosphere is free of moisture, which could cause moving parts to freeze up
Rated Insulation Voltage		690 V (degree of pollution 3)
Mechanical Ratings		
Working Positions		All actuators can be rotated in 90° increments (although some types of actuator, such as a long, heavy spring with the adjustable actuator fully extended, may not work properly if installed in a horizontal position).
Mechanical Life		Straight line working heads: 30 million operations, side rotary heads: 25 million operations, multidirectional heads: 10 million operations
Enclosure Material		Plastic models: fiberglass-reinforced plastic-V0 class (UL94); aluminum models: die cast aluminum
Contact Blocks Rating		
Positive Opening*		Yes, all models
Electrical Ratings	AC15	Make: 60A@120VAC; 30A @ 240VAC; 18A @ 400VAC Break:10A @ 24VAC; 6.5 A @130VAC; 3.1 A @ 230VAC; 1.8 A @ 400VAC
	DC13	2.8A@ 24VDC; 0.5 A @ 110VDC
Maximum Switching Frequency		Contact blocks: all two cycles per second
Repeat Accuracy		0.01 mm on the operating points at 1 million operations
Short-Circuit Protection		Cartridge fuses gl 10A-500V 10.3x38 1 100KA
Contact Resistance		25 milli Ω
Recommended Minimum Operating Speed		With snap-action contacts: 20 mm per minute** With slow-action contacts: 500 mm per minute***
Rated Insulation Voltage		660 V
Terminals Marking		According to CENELEC EN 50013
Wiring Connections		$2 \times 2.5 \mathrm{~mm}^{2}$ (AWG14) to $2 \times 0.5 \mathrm{~mm}^{2}$ (AWG18)
Wiring Terminal Type		Captive screw with self-lifting pressure plate
Wiring Terminal Markings		According to CENELEC EN50013
User Protection		Double insulation (plastic models only)
Contact Blocks Performance		
Operation Frequency		3600 ops/h
Electrical Durability (according to IEC 947-51)		Utilization categories AC-15 and DC-13; load factor of 0.5 . See table and curves below.
Tools Needed		Phillips screwdriver, \#1 \#2 / Hex wrench, 10mm

* Positive opening in a snap-action contact block is performed by a rigid mechanism that forces the N.C. contact to open in case the snap action mechanism fails. This would provide protection if, for example, the contacts became "welded" together by excessive current rush. Generally, positive opening is not considered to work properly on switches with actuators that are not a solid design (such as a spring or rubber roller), despite the fact that the contact block itself has positive opening. In order to be considered as having positive opening, a switch must not have flexible components between actuator actioning points and the electrical contact.
** This is the speed at which snap-action contact blocks are tested. There is no minimum operating speed for snap-action contacts because the speed has no influence on the switch action. When using spring actuators, the changeover time may vary from 1 to 3 ms from max. to min. operating speed.
*** Slow-action contacts must not be operated at very low speeds because of the tendency to maintain the arc if contacts are not rapidly separated.

Electrical Durability (according to IEC 947-5-1)

AC-15 Slow Action

DC-13	Snap-Action	Slow-Action
	Power breaking for a durability of 5 million cycles	
24 Volts	9.5 W	12 W
48 Volts	6.8 W	9 W
$\mathbf{1 1 0}$ Volts	3.6 W	6 W

IEC Limit Switches Bar Charts

Limit switch types

Snap-action contact: A contact element in which the contact motion is independent of the speed of the actuator. This feature ensures reliable electrical performance even in applications involving very slow moving actuators.
Slow-make/slow-break contacts: A contact element in which the contact motion is dependent on the actuator speed.

Terminal identification (IEC)

Each terminal is marked with two digits. The first digit indicates the pole (circuit). The second digit indicates the type of contact.
_1-_2 is N.C., _3-_4 is N.O.
so 11-12, 21-22 are N.C., while 13-14, 23-24 are N.O.

Make-before-break (overlapping) SPDT: the N.O. contact closes before the N.C. contact opens. (See ex: Y11)
Break-before-make (offset) SPDT: the N.C. contact opens before the N.O. contact closes. (See ex: X11)
Simultaneous make and break SPDT: the N.C. contact opens at the same time as the N.O. contact closes. (See ex: Z11)

Contacts Configuration

Z11 Snap Action Contacts

1 N.O. and 1 N.C.

A = Max. travel of the operator in mm or degrees
B =Tripping travel of both contacts on actuation
C = Tripping travel of both contacts on release
D = Differential travel (between actuation and release)
$P=$ Point from which positive opening is assured during actuation

Part Series	Displacement Values (mm [in] or degrees)			
	A	B	C	P
ABMxE11Z11	6.0 [0.24]	3.0 [0.12]	1.8 [0.07]	4.6 [0.18]
ABMxE13Z11	10.5 [0.41]	5.3 [0.21]	3.1 [0.12]	8.2 [0.32]
ABMxE32Z11	15.5 [0.61]	6.3 [0.25]	3.1 [0.12]	10.8 [0.43]
ABMxE42Z11	78°	33°	20°	49°
ABMxE52Z11	78°	33°	20°	49°
ABMxE71Z11	78°	33°	20°	49°
ABMxE92Z11	-	21°	$9{ }^{\circ}$	-
ABMxE93Z11	-	21°	21°	-
ABPxH14Z11	5.9 [0.23]	2.2 [0.09]	1.0 [0.04]	3.8 [0.15]
ABPxH19Z11	10.5 [0.41]	4.6 [0.18]	2.4 [0.09]	7.5 [0.30]
ABPxH35Z11	17 [0.67]	6.8 [0.27]	3.8 [0.15]	11.3 [0.44]
ABPxH41Z11	90°	31°	19°	47°
ABPxH51Z11	90°	31°	19°	47°
ABPxH71Z11	90°	31°	19°	47°
ABPxH92Z11	-	27°	15°	-
ABPxH93Z11	-	27°	15°	-
AAP2T14Z11	$9.6[0.38]$	4.7 [0.19]	2.5 [0.10]	7.6 [0.30]
AAP2T13Z11	5.5 [0.22]	2.5 [0.10]	1.3 [0.05]	4.1 [0.16]
AAP2T35Z11	21 [0.83]	9 [0.35]	4.9 [0.19]	14.5 [0.57]
AAP2T41Z11	74°	31°	17°	47°
AAP2T51Z11	74°	31°	17°	47°
AAP2T71Z11	74°	31°	17°	47°

Eerminal MarkingS	
European	
Terminal No.	Type
$11-12$	N.C. contact of pole no. 1^{1}
$13-14$	N.O. contact of pole no. 2^{1}
$21-22$	N.C. contact of pole no. 2^{2}
$23-24$	N.O. contact of pole no. 1^{2}

${ }^{1}$ With non-isolated contacts ${ }^{2}$ With isolated contacts
Note: Green/yellow wire is physical earth ground.

$$
\begin{aligned}
\square & =\text { Contact open } \\
& =\text { Contact closed }
\end{aligned}
$$

Bar Chart Examples

 (cam angle is 30 degrees)

Changeable working heads (E42, E52, E71) models; view of cam insert when looking at bottom of head once removed from switch body.
To change position, push in and twist until it locks into place

